A New Approach to Prepare 2-Acetyl-Mono (5,6,7,8)-Nitro-1,2,3,4-Tetrahydroisoquinolines

Chong Zhao RAN, Tai Zhi WU, Guo Ping WANG, Mei Hua XIE*

Department of Medicinal Chemistry, Shanghai Institute of Pharmaceutical Industry, Shanghai 200437

Abstract: N-Acetyl-*p*, *m* or *o*-nitro-phenylethylamines and (HCHO)_n were treated in 60% H₂SO₄/HOAc, *via* α -amidoalkylation to give 2-acetyl-mono(5, 6, 7 or 8)-nitro-1,2,3,4-tetrahydro-isoquinolines. Additionally, some interesting phenomena were observed when the comparison between 2-acetyl-5, 6, 7 or 8-nitro-1,2,3,4-tetrahydroisoquinolines and 2-alkylsulfonyl-5, 6 or 7-nitro-1,2,3,4-tetrahydroisoquinolines was made.

Keywords: α -Amidoalkylation, 2-acetyl-mono (5, 6, 7, 8)-nitro-1,2,3,4-tetrahydroisoquinolines, nitro-1,2,3,4-tetrahydroisoquinolines.

2-Acetyl-nitro-1,2,3,4-tetrahydroisoquinolines are very important intermediates for organic synthesis¹. McCoubrey reported 2-acetyl-7-nitro-1,2,3,4-tetrahydro-isoqunoline and 2-acetyl-5,7-dinitro-1,2,3,4-tetrahydroisoquinoline could be prepared by nitration of 2-acetyl-1,2,3,4-tetrahydroisoquinoline, low yield and tiresome purification procedure were disadvantages of this method , and 2-acetyl-5, 6 or 8-nitro-1,2,3,4-tetrahydro-isoquinolines could not be obtained according to this approach (**Scheme 1**)^{2,3,4}.

The method of preparation of 2-acetyl- 6 or 8-nitro-1,2,3,4-tetrahydroisoquinolines was reported by Tercel , but this method also was limited to be used widely due to the low yields and tiresome chromatography separation (**Scheme 2**)⁵. In 1998, Quallich reported one multi-step approach to prepare tetrahydroisoquinolines with electron withdrawing group, but the reagents and material was expensive for used widely⁸. In 1996, Stokker reported N-trifluoroacetyl-*p*-nitro-phenyl-ethylamine could be converted into 2-trifluoroacetyl-7-nitro-1,2,3,4-tetrahydro-isoquinoline⁶. Previously, we reported that the reaction of N-methyl-sulfonyl-*p* or *m* or *o*-nitro-phenylethylamine with (HCHO)_n in 60% H_2SO_4 /HOAc gave 2-methylsulfonyl-mono(5,6 ,7)-

nitro-1,2,3,4-tetrahydroisoquinolines. However, 8- nitro-1,2,3,4-tetrahydroisoquinoline could not be obtained in this case (**Scheme 3**)⁷. **Scheme 2**

Now, we would like to report a new approach to prepare 2-acetyl- mono (5, 6, 7, 8)-nitro-1,2,3,4-tetrahydroisoquinolines with much more cheap material N-acetyl- p, m or o-nitro-phenylethylamines $via \ \alpha$ -amidoalkylation reaction. The position of nitro did not play an important role in the conversion , but the reaction temperature could influence the speed of reaction significantly, the favorable temperature was 40-50°C (Scheme 4).

In the procedure of experiments, interesting phenomena occurred. Contrast to our previous report ⁷, when N-acetyl-*m*-nitro-phenylethylamine was treated with paraform in 60% H₂SO₄/HOAc, both 2- acetyl-6-nitro-1,2,3,4-tetrahydroisoquinoline and 2-acetyl-8-nitro-1,2,3,4-tetrahydroisoquinoline were produced. They could be separated by silica chromatography⁵.

¹H-NMR data of 2-acetyl-5, 6,7 or 8-nitro-1,2,3,4-tetrahydroisoquinolines showed that two isoformers existed, the ratio of two isoformers was about 3:2, which was similar to the reports of Stokker⁵ and Tercel (see ¹HNMR data of **2c** in the experiment part)⁶. Contrast to this phenomena, only one isoformer of 2-alkylsulfonyl-mono (5,6,7)–nitro-1,2,3,4-tetrahydroisoquinolines was observed⁷. The possible reason of

A New Approach to Prepare 2-Acetyl-Mono (5,6,7,8)-Nitro-1,2,3,4-Tetrahydroisoquinolines 859

these differences is the hindrance of the sulfonyl group.

Scheme 4

Typical (26.6mmol) cyclization procedure of(2c): 5.5g N-acetyl -p-nitro-phenylethyl-amine and cold 60% H₂SO₄/HOAc (v/v) 25 ml were added into 50 ml flask, fine powder (HCHO)_n 1.20g (39.8mmol) was added. The reaction mixture was stirred at 40~50°C for 8hr. The mixture was cooled to room temperature and poured into 200 ml ice-water under stirring. This resulted mixture was extracted with 50 \times 3 ml CH_2Cl_2 and washed with 20×3 ml H₂O, dried over anhydrous MgSO₄. The solvent was evaporated off to give pale solid, which was recrystalized from ethyl acetate or chloroform to give white solid. m.p:84-86°C^{1~4}. Yield: 88%, ¹H-NMR (300MHz, CDCl₃, δ ppm): a 3:2 mixture of amide isoformers doubling most signals, 2.20(s,1.8H,CH3), 2.22(s,1.2H,CH3), 2.95(t, J=12Hz, 0.8H,N-CH₂-), 3.02 (t, J=12Hz, 1.2H, N-CH₂-), 3.74(t, J=12Hz, 1.2H, Ar-CH₂-), 3.87(t, J=12Hz, 0.8H, Ar-CH₂-), 4.73(s,0.8H, Ar-CH₂-N), 4.80(s,1.2H, Ar-CH₂-N) 7.28-8.07(m,3H, aromatic).

In conclusion, a convenient method for the preparation of 2-acetyl-5, 6, 7 or 8-nitro-1,2,3,4-tetrahydroisoquinolines from much more cheap material was developed.

Acknoweledgment

we are very grateful to the supports from the new drug discovery foundation of Shanghai Institute of Pharmaceutical Industry and the Analysis Centre of the Second Military Medical University.

References

- 1. a) A.McCoubrey, D.W. Mathieson, J. Chem. Soc., 1951, 2851.
- b) J.F.Ajao, C.W.Bird, J.Heterocycl.Chem., 1985, 22,329.
- 1. A.McCoubrey, D.W. Mathieson, J. Chem. Soc., 1949,696.
- 2. A.McCoubrey, D.W. Mathieson, J.Chem.Soc., 1950,1833.

Chong Zhao RAN et al.

- 3. J.F.Ajao, C.W.Bird, J.Heterocycl.Chem., 1985, 22,329.
- 5. M.Tercel, W.R.Wilson, J.Med.Chem., 1996, 39,1084.
- 6. G.E.Stokker, Tetrahedron Letters, 1996, 37(31), 5453.
- 7. C.Z.Ran, G.P.Wang, M.H.Xie, Synth. Commun., 2000, 30(9), 1581.

8. GJ.Quallich, T.W.Makowski, J.Org. Chem. 1998, 63, 4116.

Received 4 April 2000